Geomaterials Research Project

Geofoam and Geocomb Geosynthetics: A Bibliography Through the Second Millennium A.D.

Research Report No. CGT-2001-1

by

John S. Horvath, Ph.D., P.E.
Professor of Civil Engineering
Director/Center for Geotechnology

Manhattan College
School of Engineering
Center for Geotechnology
Bronx, New York
U.S.A.

May 2001
This report plus others in the Manhattan College Center for Geotechnology (CGT) and Civil Engineering Department geotechnical engineering program (CE/GE) research report series are available in PDF format via the Internet at <www.engineering.manhattan.edu/civil/CGT.html>.

© 2001 by John S. Horvath. All rights reserved.

Prof. John S. Horvath, Ph.D., P.E.
Manhattan College
Civil Engineering Department
Bronx, New York 10471-4098
U.S.A.

e-mail: <jhorvath@manhattan.edu>
personal webpage: <www.manhattan.edu/~jhorvath/>
direct-dial telephone: +1-718-8627177
telefax: +1-718-8628035

Limitations

The information contained in this document is the result of original research and is made available to the public solely as a contribution to the general state of civil engineering knowledge. As such, this document does not constitute a design manual or standard, and should not be interpreted, used or referred to as such. The author and Manhattan College assume no liability for the performance of any structure constructed using the methodologies discussed in this document.

In addition, any reference, either direct or indirect, to a specific manufacturer, material or product is made solely for the purposes of the study documented in this report and does not constitute an endorsement or promotion of that manufacturer, material or product by the author or Manhattan College.

Distribution and Use

Authorization is hereby granted by the copyright holder to copy, distribute and print this document without restriction provided that this document is copied and printed in its entirety; distributed at no cost; and used for individual reference purposes only. This document may not be sold or used in whole or in part in any manner for commercial purposes of any type, including manufacturer's product or marketing literature, without prior written consent of the copyright holder.

Those wishing to make a paper copy of this document are advised that it is formatted for double-sided printing. A gutter has been provided in the page formatting to allow space for binding along the inner side if desired. It is suggested that the printer settings in Adobe® Acrobat® be set to "Print as image" for optimum readability.
CONTENTS

The Manhattan College School of Engineering Center for Geotechnology and Its Mission ... v

Preface .. vii

Topical Listing
General (discuss both geofoam and geocomb) .. 1
Geofoam
 General/Miscellaneous .. 1
 Material Properties and Behavior .. 7
 Functional Applications
 Compressible Inclusion ... 11
 Fluid Transmission (Drainage) ... 16
 Lightweight Fill .. 17
 Noise and Vibration Damping ... 44
 Structural ... 45
 Thermal Insulation ... 46
Geocomb
 General/Miscellaneous .. 57
 General Material Properties and Behavior .. 57
 Functional Applications
 Drainage ... 57
 Lightweight Fill .. 57

Alphabetical Listing
General (discuss both geofoam and geocomb) ... 59
Geofoam ... 59
Geocomb ... 114

Chronological Listing
General (discuss both geofoam and geocomb) .. 116
Geofoam ... 117
Geocomb ... 172
This page left blank.
The Manhattan College School of Engineering *Center for Geotechnology* and Its Mission

The Manhattan College School of Engineering *Center for Geotechnology* (CGT) is a unique organization that strives to be more than the typical academic research center or institute. It was founded in 2001 at the initiative of Prof. John S. Horvath, Ph.D., P.E. of the Civil Engineering Department who serves as its first Director. The CGT is the result of Prof. Horvath's evolutionary realization after almost 30 years of geotechnical engineering practice that the explosive growth in geotechnical and geoenvironmental engineering technology has made it difficult for the engineering practitioner to keep abreast of new technical developments. The traditional academic approach of simply publishing research results in narrowly disseminated technical reports and papers (a philosophy of "if you print it, they will learn") has proven to be an increasingly ineffective way of reaching practitioners and moving the state of art to the state of practice. The critical need for a total rethinking of how life-long continuing education is achieved not only for engineering practitioners but academicians themselves is evidenced by the appearance of "teach-the-teacher" training courses in drilled shaft foundations and geosynthetics beginning in the late 1980s. If even academicians cannot keep up with new developments by reading journal papers and conference proceedings, how can practitioners be expected to? The stagnation of geotechnology also affects current engineering students and perpetuates the cycle. The desirability of involving the practitioner in the process of formulating research programs so that they may have a more direct and immediate benefit to practice is also something that is now recognized more and more.

The CGT seeks to address the current need for effective, meaningful continuing education by recognizing that the cycle of growth for any technology has three interdependent components, what can be called the "trilogy of technology". Like a three-legged stool, each of these components must be of equal length and strength if a given technology is to succeed. Thus the CGT has adopted a holistic strategy of supporting geotechnology growth by recognizing the need to concurrently address:

- *Technology advancement* through research and development that involves not only the engineering practitioner but also other end users of geotechnology such as construction contractors and material manufacturers to the greatest extent practicable.

- *Technology transfer* through education of engineers, contractors and manufacturers in a multi-faceted, proactive way.

- *Technology documentation* through standards development so that all end users (practitioners, contractors and manufacturers) of a given technology work to a common set of guidelines.

This trilogy of technology growth is the cornerstone of all activities of the CGT. It is important to note that the interaction of these three components, which is embodied in the CGT logo that is shown on the cover of this report, is never completed but assumes a constant cycle that leads to continuous growth of a technology.

The CGT receives no direct financial support from Manhattan College for any of its activities. Thus the success and growth of the CGT is totally a function of outside funding from individuals and organizations whose philanthropic philosophies are consistent with the stated goal of the CGT to treat technology growth in a more holistic fashion than is typically done in academia and considers the entire process from research to standards with end-user input at all stages. In addition, as part of its mission to promote technology transfer through education to the greatest extent practicable the CGT is willing to partner with industry and other academic institutions not
only in research but also technology transfer and standards activities on any topic relevant to
technical or geoenvironmental engineering. The new Manhattan College School of Engineering
William J. Scala Academy Room, which is located on the main floor of the Leo Engineering
Building and available for CGT activities, offers modern facilities for hosting technology transfer
activities. One benefit of Manhattan College's location on the northern edge of New York City is
that it is quite accessible (including free off-street parking adjacent to Leo Engineering Building)
from both within and outside the City. More information about the CGT can be found on the
Internet at <www.engineering.manhattan.edu/civil/CGT.html>.
Preface

Within a few months after becoming employed full time in academia in August 1987, I developed an awareness from several technical papers of the intriguing concept of *controlled yielding* within the ground as a means of reducing stresses from earth materials acting on earth retaining structures. Because of my practice-oriented research perspective developed as a result of many years in engineering practice, I immediately began a search for relatively compressible material(s) that could realistically be used to accomplish controlled yielding routinely in actual applications, something that prior research into this topic by others had largely ignored. As a result of reading a landmark paper by Partos and Kazaniewsky that had been published in a somewhat obscure conference proceedings in the 1980s, this search soon led me to polymeric (plastic) foams and identifying their use as what we now call *compressible inclusions*, a significant research interest of mine from 1988 to the present.

By the early 1990s, I had become aware of the broader geotechnical applications of polymeric foams, especially expanded polystyrene (EPS), and broadened my research activities accordingly. I was intrigued by these materials, EPS in particular, and the fact that they had been used as geomaterials in some countries since at least the early 1960s. This usage included the U.S.A. where several pioneering patents for polymeric foams in geotechnical applications had been issued in the mid 1960s and early 1970s. Despite this generally successful early usage, most geotechnical engineers in many countries (especially the U.S.A.) were completely unaware of the use of polymeric foams as geomaterials and thus were certainly not using them circa 1990. This underutilization of what I perceived to be a fascinating family of geomaterials motivated me to broaden my research activities. To begin with, the generic definition of *geofoam* as any closed-cell foam used in a geotechnical application was established by me in the early 1990s (I did not learn until November 1997 that the word geofoam had actually been coined as early as the 1970s). I also promoted the recognition of geofoam as a geosynthetic product category, a significant departure from the traditional (and still common) perception that geosynthetics are only relatively thin planar products and something that still does not sit well with some geosynthetics purists.

One aspect of my broadened interest in and research into geofoams was obtaining and reviewing all known publications and other technical information related to them. I focused my efforts on EPS because of its rather amazing range of proven and potential geotechnical applications as well as its durability and relatively low cost which has led to its being the geofoam material of choice in most applications. I soon realized that there would be a benefit in synthesizing the surprising large body of information I found on EPS geofoam, most of which had been published in obscure venues not readily known or easily obtained (part of the reason why so few engineers knew about geofoams), and publishing it in a single volume. This goal was realized with the self publication of my monograph "*Geofoam Geosynthetic*" in July 1995. This monograph also contained a complete bibliography of all publications obtained and reviewed by me as of mid 1995.

Even after publication of "*Geofoam Geosynthetic*", I continued acquiring geofoam related documents as they were published or otherwise became available to me. To keep track of this ongoing effort, I created and kept updated a geofoam bibliography file on my computer. I also expanded this bibliography to include publications I became aware of but which I had not been able to acquire. In September 1999, I again expanded this bibliography to include *geocombs*, a term I coined earlier that year for another new geosynthetic product category for materials with an open-cell, honeycomb structure.

In recent years, this digital geofoam and geocomb bibliography was posted as a work-in-progress document on The Geofoam WWW Site™. This now-defunct Internet website was created by me in July 1996 and operated independently by me for over four years. With the true end of the second millennium anno domini (A.D.) on December 31, 2000, it seemed appropriate to prepare a final (true) millennial version of this bibliography as a Manhattan College research report. It is also
fitting that this report is the first published under the aegis of the new (as of 2001) Manhattan College School of Engineering Center for Geotechnology (CGT) that I am privileged to serve as its first Director. This report is a major contribution to the Geomaterials Research Project which is one of three initial research areas of the CGT. I will leave it to others to carry this bibliography into the third millennium A.D. and add entries for geofoam materials such as cementitious foams and foam grouts that I have not had the time to research and document to any significant extent. There are undoubtedly inadvertent errors and omissions in this bibliography that will require correction as well.

This bibliography is intended to be a resource document for both practicing engineers as well as academic researchers. Thus the listings in this bibliography are organized in three ways to facilitate use:

- by topic (alphabetically by author within each topic),
- alphabetically by author and
- chronologically (alphabetically by author within each year).

Those publications that I have not been able to obtain and review are shown in lighter (gray) type. Note that some of the entries for such publications are incomplete (e.g. publisher or date of publication unknown) but this simply reflects the information as I know it at the time I prepared this report.

Consistent with the original bibliography published in my monograph "Geofoam Geosynthetic", virtually all manufacturer's literature was intentionally omitted from this bibliography for several reasons. First of all, it is impossible to keep track of such literature, especially on an international basis. Thus it is impossible to include all literature which would inadvertently offend some company. Second, most of this literature changes frequently so has little or no lasting value from a documentation perspective. Third, the distinction between sales hype and truly useful technical data is sometimes difficult to distinguish in such literature so I feel it had no place in a document of this nature. Where I have included a citation for a publication by a material manufacturer it is typically an authorized reprint of some national design code or similar type of document.

Finally, although this report is the end product of over a decade of my personal effort, it would not exist without the generous assistance provided by innumerable individuals and business entities from around the world. The generous sharing of acquired knowledge by these sources has led to the enormous global growth in the recognition and use of EPS-geofoam technology in particular during the 1990s after decades of obscurity. This collective effort has unequivocally demonstrated that technology transfer is a crucial component in the development and growth of any technology. Quite simply, if someone does not know about a technology it is fundamentally impossible for them to use it and thus that technology will languish.

John S. Horvath, Ph.D., P.E.
Bronx, New York, U.S.A.
May 2001
TOPICAL LISTING

General (discuss both geofoam and geocomb)

Horvath, J. S., "Designing with geofoam geosynthetic", notes prepared for participants at the American Society of Civil Engineers/Branch River Foam Plastics, Inc. continuing education seminar, Randolph, Mass., U.S.A., October 1999.

Horvath, J. S., "Designing with geofoam geosynthetic", notes prepared for participants at the American Society of Civil Engineers/Perma ‘R’ Products, Inc. continuing education seminar, New Orleans, La., U.S.A., January 2000.

Geofoam

General/Miscellaneous

DOEPS (Development Organization of EPS for Civil Engineering Work Method), booklet for the meeting of Western Japan Group of DOEPS, 1987 (in Japanese).

Horvath, J. S., "Geofoam geosynthetic: past, present, and future", paper prepared for distribution to participants at the Fourth Professor Training Course for Geosynthetics, Auburn University, Auburn, Ala., U.S.A., July 1997.

Horvath, J. S., "Designing with geofoam geosynthetic", notes prepared for participants at an American Society of Civil Engineers continuing education seminar, Atlanta, Ga., U.S.A., January 1999.

Horvath, J. S., "Designing with geofoam geosynthetic", notes prepared for participants at an American Society of Civil Engineers continuing education seminar, South San Francisco, Calif., U.S.A., March 1999.

Horvath, J. S., "Designing with geofoam geosynthetic", notes prepared for participants at the Polyfoam Packers Corporation/American Society of Civil Engineers continuing education seminar, Glenview, Ill., U.S.A., May 1999.

Horvath, J. S., "EPS geofoam in transportation applications", notes distributed to attendees at a presentation at the State of Rhode Island Department of Transportation on behalf of Branch River Foam Plastics, Inc., Providence, R.I., U.S.A., November 1999.

Horvath, J. S., "Introduction to geofoam geosynthetic", notes distributed to participants at a seminar sponsored jointly by Plymouth Foam Incorporated and NOVA Chemicals Inc., Waukesha, Wis., U.S.A., May 2000.

Horvath, J. S., "Lessons learned from failures involving geofoam in roads and embankments", in press.

Material Properties and Behavior

Krollmann, N., "Langzeitverhalten von extrudierten polystyrol-hartschaum bei konstanter und zyklisch wechselnder druckbeanspruchung", Bauphysik 17, Heft 1, Ernst & Sohn-Verlag, Germany, 1995.

"Moisture content testing of EPS foundation insulation", report, Project No. 4140 94-2190, Huntington Engineering and Environmental.

Functional Applications

Compressible Inclusion

Fluid Transmission (Drainage)

Lightweight Fill

Aabøe, R., "Norwegian roads on foam fill", Norwegian Road Research Laboratory, Oslo, Norway, undated.

Aabøe, R., "13 years of experience with EPS as a lightweight fill material in road embankments", Publication No. 61, Norwegian Road Research Laboratory, Oslo, Norway, 1987, pp. 21-27.

"Composite modules make golf green float", ENR, 3 December 1990, p. 20.

Evans, L., "Expanded polystyrene as lightweight fill", senior report, University of New Brunswick, Canada, 1986.

"Expanded polystyrene used in road embankments - design, construction and quality assurance", Form 482E, Norwegian Road Research Laboratory, Oslo, Norway, September 1992.

"Fillmaster used in bridge abutments", Highways and Transportation, June 1991, p. 15.

"Guidelines on the use of plastic foam in road embankment", Norwegian Road Research Laboratory, Oslo, Norway, May 1980.

Kyuraku, K., Aoyama, N. and Takeuchi, T., "Behavior of polystyrene foam when subjected to traffic loads", *Proceedings of the 17th Japan Road Association Conference*, undated.

"Material requirements for expanded polystyrene used in road embankments", Form 483E, Norwegian Road Research Laboratory, Oslo, Norway, September 1992.

Monahan, E. J., "Weight-credit foundation construction using foam plastic as fill", notes distributed at a lecture sponsored by the American Society of Civil Engineers Metropolitan Section, New York, N.Y., U.S.A., undated.

"Plastics replace subsoil", ENR, 27 April 1989, p. 17.

Polen, B., "PS-hardfoam as a low price levelling-up material", TRRL Translation T 3640, Transport and Road Research Laboratory, Crowthorne, Berkshire, U.K., May 1990.

"Quality control of expanded polystyrene used in road embankments", Form 484E, Norwegian Road Research Laboratory, Oslo, Norway, September 1992.

Scheidegger, F., "Strassenbauten in weichen böden", Schweizer Baublatt No. 97/Autostrasse No. 8, 6 December 1977.

"Test work of EPS construction method on national road route 1 Numazu by-pass road", Expanded Polystyrol Construction Method Development Method, Tokyo, Japan, undated.

"Use of expanded polystyrene in road embankments; technical guide", TRRL Translation T 3766, Transport and Road Research Laboratory, Crowthorne, Berkshire, U.K., May 1991.
"Utilisation de polystyrene expanse en remblai routier; guide technique", Laboratoire Central Ponts et Chaussées/SETRA, France, 1990, 18 pp.

Wagner, G., "Expanded polystyrene as a lightweight embankment material", senior report, University of New Brunswick, Canada, 1986.

Noise and Vibration Damping

Structural

Thermal Insulation

"A survey of Minnesota home exterior foundation wall insulation; moisture content and thermal performance", report, Minnesota Department of Public Service, U.S.A.

Esch, D. C., "20 year performance history on first insulated roadway on permafrost in Alaska", *Proceedings; Permafrost - Sixth International Conference*, Beijing, P.R.C., 1993, pp. 164-174.

Louie, T. M., "Val Gagne test site; comparing the predicted and theoretical results and the actual measured data using a two-dimensional thermal computer program", Dow Chemical Canada Inc., Research and Development, Construction Materials Section, Rexdale, Ont., Canada, 6 November 1978.

Refsdal, G., "Thermal design of frost proof pavements", *Proccedings of the 16th World Road Congress*, Permanent International Association of Road Congresses, 1979.

Geocomb

General/Miscellaneous

"Recognition for honeycomb technology", undated, p. 20.

General Material Properties and Behavior

Functional Applications

Drainage

"Les structures alvéolaires ultra légères (SAUL) en assainissement pluvial", France.

Lightweight Fill

"Embankments...lightened!", *Moniteur*, 8 June 1990.

Perrier, H. and Gourvat, D., "7000 m³ of honey combed structure at foot of the 'Pyramide du Louvre'”, *Recontres*, 95, 1995.

"1700 m³ of Nidaplast", *Chantiers de France*, No. 25, Nov. 1989 (in French).
ALPHABETICAL LISTING

General (discuss both geofoam and geocomb)

Horvath, J. S., "Designing with geofoam geosynthetic", notes prepared for participants at the American Society of Civil Engineers/Branch River Foam Plastics, Inc. continuing education seminar, Randolph, Mass., U.S.A., October 1999.

Horvath, J. S., "Designing with geofoam geosynthetic", notes prepared for participants at the American Society of Civil Engineers/Perma 'R' Products, Inc. continuing education seminar, New Orleans, La., U.S.A., January 2000.

Geofoam

"A survey of Minnesota home exterior foundation wall insulation; moisture content and thermal performance", report, Minnesota Department of Public Service.

Aabøe, R., "Norwegian roads on foam fill", Norwegian Road Research Laboratory, Oslo, Norway, undated.

Aabøe, R., "13 years of experience with EPS as a lightweight fill material in road embankments", Publication No. 61, Norwegian Road Research Laboratory, Oslo, Norway, 1987, pp. 21-27.

"Composite modules make golf green float", ENR, 3 December 1990, p. 20.

DOEPS (Development Organization of EPS for Civil Engineering Work Method), booklet for the meeting of Western Japan Group of DOEPS, 1987 (in Japanese).

Esch, D. C., "20 year performance history on first insulated roadway on permafrost in Alaska", *Proceedings; Permafrost - Sixth International Conference*, Beijing, P.R.C., 1993, pp. 164-174.

Evans, L., "Expanded polystyrene as lightweight fill", senior report, University of New Brunswick, Canada, 1986.

"Expanded polystyrene used in road embankments - design, construction and quality assurance", Form 482E, Norwegian Road Research Laboratory, Oslo, Norway, September 1992.

"Fillmaster used in bridge abutments", *Highways and Transportation*, June 1991, p. 15.

Frydenlund, T. E., "Soft ground problems", Publication No. 61, Norwegian Road Research Laboratory, Oslo, Norway, 1987, pp. 7-12.

"Guidelines on the use of plastic foam in road embankment", Norwegian Road Research Laboratory, Oslo, Norway, May 1980.

Horvath, J. S., "Geofoam geosynthetic: past, present, and future", paper prepared for distribution to participants at the Fourth Professor Training Course for Geosynthetics, Auburn University, Auburn, Ala., U.S.A., July 1997.

Horvath, J. S., "Designing with geofoam geosynthetic", notes prepared for participants at an American Society of Civil Engineers continuing-education seminar, Atlanta, Ga., U.S.A., January 1999.

Horvath, J. S., "Designing with geofoam geosynthetic", notes prepared for participants at an American Society of Civil Engineers continuing-education seminar, South San Francisco, Calif., U.S.A., March 1999.

Horvath, J. S., "EPS geofoam in transportation applications", notes distributed to attendees at a presentation at the State of Rhode Island Department of Transportation on behalf of Branch River Foam Plastics, Inc., Providence, R.I., U.S.A., November 1999.

Horvath, J. S., "Introduction to geofoam geosynthetic", notes distributed to participants at a seminar sponsored jointly by Plymouth Foam Incorporated and NOVA Chemicals Inc., Waukesha, Wis., U.S.A., May 2000.

Horvath, J. S., "Lessons learned from failures involving geofoam in roads and embankments", in press.

Krollmann, N., "Langzeitverhalten von extrudierten polystyrol-hartschaum bei konstanter und zyklisch wechselnder druckbeanspruchung", Bauphysik 17, Heft 1, Ernst & Sohn-Verlag, Germany, 1995.

Kyraku, K., Aoyama, N. and Takeuchi, T., "Behavior of polystyrene foam when subjected to traffic loads", *17th Japan Road Association Conference*, undated.

Louie, T. M., "Val Gagne test site; comparing the predicted and theoretical results and the actual measured data using a two-dimensional thermal computer program", Dow Chemical Canada Inc., Research and Development, Construction Materials Section, Rexdale, Ont., Canada, 6 November 1978.

"Material requirements for expanded polystyrene used in road embankments", Form 483E, Norwegian Road Research Laboratory, Oslo, Norway, September 1992.

"Moisture content testing of EPS foundation insulation", report, Project No. 4140 94-2190, Huntingdon Engineering and Environmental.

Monahan, E. J., "Weight-credit foundation construction using foam plastic as fill", notes distributed at a lecture sponsored by the American Society of Civil Engineers Metropolitan Section, New York, N.Y., U.S.A., undated.

Polen, B., "PS-hardfoam as a low price levelling-up material", TRRL Translation T 3640, Transport and Road Research Laboratory, Crowthorne, Berkshire, U.K., May 1990.

Proceedings of a symposium held on 3 March 2000 re the use of EPS-block geofoam as lightweight fill in road construction, Taiwan, R.O.C. (various papers in Chinese, English and Japanese).

"Quality control of expanded polystyrene used in road embankments", Form 484E, Norwegian Road Research Laboratory, Oslo, Norway, September 1992.

Refsdal, G., "Thermal design of frost proof pavements", *Proceedings of the 16th World Road Congress*, Permanent International Association of Road Congresses, 1979.

Scheidegger, F., "Strassenbauten in weichen böden", Schweizer Baublatt No. 97/Autostrasse No. 8, 6 December 1977.

Skogseid, A., "Prevention of frost heave in roads; an outline of the theory for the use of insulating materials", Norway Records No. 37, Norwegian Road Research Laboratory, Oslo, Norway, 1971, pp. 3-10.

"Use of expanded polystyrene in road embankments; technical guide", TRRL Translation T 3766, Transport and Road Research Laboratory, Crowthorne, Berkshire, U.K., May 1991.

"Utilisation de polystyrene expanse en remblai routier; guide technique", Laboratoire Central Ponts et Chaussées/SETRA, France, 1990, 18 pp.

Vaslestad, J., Johansen, T. H. and Holm, W., "Load reduction on rigid culverts beneath high fills: long-term behavior", *Transportation Research Record No. 1415*, 1993, pp. 58-68.

Wagner, G., "Expanded polystyrene as a lightweight embankment material", senior report, University of New Brunswick, Canada, 1986.

Geocomb

"Embankments...lightened!", Moniteur, 8 June 1990.

"Les structures alvéolaires ultra légères (SAUL) en assainissement pluvial", France.

Perrier, H. and Gourvat, D., "7000 m³ of honey combed structure at foot of the 'Pyramide du Louvre'", Rencontres, 95, 1995.

"Recognition for honeycomb technology", undated, p. 20.

"1700 m³ of Nidaplast", Chantiers de France, No. 25, Nov. 1989 (in French).
CHRONOLOGICAL LISTING

General (discuss both geofoam and geocomb)

(no listings prior to 1999)

1999

Horvath, J. S., "Designing with geofoam geosynthetic", notes prepared for participants at the American Society of Civil Engineers/Branch River Foam Plastics, Inc. continuing education seminar, Randolph, Mass., U.S.A., October.

2000

Horvath, J. S., "Designing with geofoam geosynthetic", notes prepared for participants at the American Society of Civil Engineers/Perma 'R' Products, Inc. continuing education seminar, New Orleans, La., U.S.A., January.

Geofoam

(no listings prior to 1965)

1965

"Subgrade insulation to prevent soil-freezing", Iowa Highway Research Project HR-7, Iowa State Highway Commission, Ames, Ia., U.S.A.

1966

1967

1968

1969

-
1970

"Performance study report on insulation board (polystyrene)", AASHO-ARBA Subcommittee on Development, Evaluation and Recommendation of New Highway Materials.

1971

Skogseid, A., "Prevention of frost heave in roads; an outline of the theory for the use of insulating materials", Norway Records No. 37, Norwegian Road Research Laboratory, Oslo, Norway, pp. 3-10.

1972

"Frost heave treatments using expanded polystyrene insulation", Ontario Provincial Highways Directive C-17, Province of Ontario Ministry of Transportation and Communications, Highway Engineering Division, Downsview, Ont., Canada, June.

1973

"Styrofoam highway insulation in Ontario - a position paper", Engineering Research and Development Branch, Design Services Branch (Soils Office), Legal Branch, Traffic Control Office, Canada, October.

1974

Saint, E. R. R., "Field installation and testing of expanded polystyrene (Styrofoam HI) for highway insulation", master's thesis, Queens University, Kingston, Ont., Canada.
1975

Borg-Hansen, P. and Refsdal, G., "New methods of achieving frost resistance", *PIARC 15th World Congress*, Mexico, October.

1976

1977

Louie, T. M., "Val Gagne test site; first tear observations of an insulated highway embankment", Dow Chemical Canada Inc., Research and Development, Construction Materials Section, Rexdale, Ont., Canada.

Scheidegger, F., "Strassenbauten in weichen böden", *Schweizer Baublatt No. 97/Autostrasse No. 8*, 6 December.

1978

"Abschlußbericht zum FA 6.204 des BMW: untersuchungen über die verwendbarkeit von wärmedämmsschichten im straßenbau", Bundesanstalt für Straßenwesen, West Germany.

Flynn, R. T., "Polystyrene foam fill - deflections, friction, impact", Internal Report No. 801, Norwegian Road Research Laboratory, Oslo, Norway, April, 37 pp.

Gunderson, P., "Frost protection of buried water and sewage pipes", CRREL Draft Translation 666, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, N.H., U.S.A.

Louie, T. M., "Val Gagne test site; second and third year's observations of an insulated highway embankment", Dow Chemical Canada Inc., Research and Development, Construction Materials Section, Rexdale, Ont., Canada, February.

Louie, T. M., "Val Gagne test site; fourth year observations of an insulated highway embankment", Dow Chemical Canada Inc., Research and Development, Construction Materials Section, Rexdale, Ont., Canada, 12 July.

Louie, T. M., "Val Gagne test site; comparing the predicted and theoretical results and the actual measured data using a two-dimensional thermal computer program", Dow Chemical Canada Inc., Research and Development, Construction Materials Section, Rexdale, Ont., Canada, 6 November.

1979

Chisolm, R. A. and Merko, A., "Raith research site - use of insulation in preventing severe longitudinal cracking", Province of Ontario Ministry of Transportation and Communications, Downsview, Ont., Canada, January.

Dahlberg, R. G. and Refsdal, G., "Polystyrene foam for lightweight road embankments", *Proceedings of the PIARC 16th World Road Congress*, Permanent International Association of Road Congresses.

Refsdal, G., "Thermal design of frost proof pavements", Proceedings of the 16th World Road Congress, Permanent International Association of Road Congresses.

Sætersdal, R. and Refsdal, G., "Frost protection in building construction", Proceedings of the 16th World Road Congress, Permanent International Association of Road Congresses.

Sørlic, A., "Polystyrene foam for lightweight road embankments", Proceedings of the 16th World Road Congress, Vienna, Austria, September.

1980

"Guidelines on the use of plastic foam in road embankment", Norwegian Road Research Laboratory, Oslo, Norway, May.

"Plastic roadbeds", Newsweek, December 15, p. 3.

1981

1982

Flaate, K., "Cold regions engineering in Norway", Civil Engineering, American Society of Civil Engineers, New York, N.Y., U.S.A., April, pp. 68-69.

1983

Esch, D. C., "Evaluation of experimental design features for roadway construction over permafrost", *Proceedings of the Fourth International Permafrost Conference*, pp. 283-288 (conference was in 1983; proceedings may have been published in 1984).

Esch, D. C., "Design and performance of road and railway embankments on permafrost", *Final Proceedings of the Fourth International Conference on Permafrost*, National Academy Press, pp. 25-30 (conference was in 1983; proceedings may have been published in 1984).

Goodrich, L. E., "Thermal performance of a section of the Mackenzie highway", *Proceedings of the Fourth International Conference on Permafrost*, National Academy Press, pp. 353-358 (conference was in 1983; proceedings may have been published in 1984).

Johnston, G., "Performance of an insulated roadway on permafrost, Inuvik, NWT", *Proceedings of the Fourth International Conference on Permafrost*, National Academy Press, pp. 548-553 (conference was in 1983; proceedings may have been published in 1984).

Lunardini, V. J., "Thawing beneath insulated structures on permafrost", *Proceedings of the Fourth International Conference on Permafrost*, National Academy Press, pp. 750-755 (conference was in 1983; proceedings may have been published in 1984).

1984

Ferguson, H., "Bypass gets quick squeeze", *New Civil Engineer*, No. 574, 26 January.

"Merkblatt für die ausführung von fahrbahnbefestigungen mit wärmedämmschichten aus harten schaumkunststoffen", Forschungsgesellschaft für Straßen- und Verkehrswesen, Köln, West Germany.

1985

Bartlett, P. A., "Density and thermal gradients in billets and their effects on physical properties", presentation at a meeting of the Society of the Plastics Industry, March.

"Load bearing first for polystyrene", New Civil Engineer, No. 665, November 14, pp. 26-27.

"Remblais legers en polystyrène expansé", Bulletin de liaison des Laboratoires des Ponts et Chaussées, Laboratoire Central Ponts et Chaussées.

1986

Evans, L., "Expanded polystyrene as lightweight fill", senior report, University of New Brunswick, Canada.

Frydenlund, T. E., "Superlight fill materials", *Publication No. 60*, Norwegian Road Research Laboratory, Oslo, Norway, pp. 11-14.

Magnan, J.-P. and Soyez, B., "Characteristics of low density embankments; limitations of the use of polystyrene", TRRL Translation T3256, Transport and Road Research Laboratory, Crowthorne, Berkshire, U.K.

McFadden, T., "Effects of moisture on extruded polystyrene insulation", *Proceedings of the ASCE Cold Regions Specialty Conference*, Anchorage, Ak., U.S.A.

"Moisture absorption and its effect on the thermal properties of EPS insulation for foundation applications; a review analysis of published laboratory and field tests", report, University of Minnesota Underground Space Center, U.S.A., October.

Wagner, G., "Expanded polystyrene as a lightweight embankment material", senior report, University of New Brunswick, Canada.

1987

Aabøe, R., "13 years of experience with EPS as a lightweight fill material in road embankments", *Publication No. 61*, Norwegian Road Research Laboratory, Oslo, Norway, pp. 21-27.

Barthelemy, J. C., Ledoux, J. L. and Carol, C., "Utilisation du polystyrène expansé pour la réparation l'un glissement de terrain à Urt", *Bulletin de liaison des Laboratoires des Ponts et Chaussées*, Laboratoire Central Ponts et Chaussées, No. 137, pp. 28-32.

Dionne, P., "Expanded polystyrene (EPS) as a lightweight embankment fill", senior report, University of New Brunswick, Canada.

DOEPS (Development Organization of EPS for Civil Engineering Work Method), booklet for the meeting of Western Japan Group of DOEPS (in Japanese).

Frydenlund, T. E., "Soft ground problems", *Publication No. 61*, Norwegian Road Research Laboratory, Oslo, Norway, pp. 7-12.

Myhre, Ø., "EPS - material specifications", Publication No. 61, Norwegian Road Research Laboratory, Oslo, Norway, pp. 13-16.

"Polystyrene blocks take load on soft ground", Highways, November.

Refsdal, G., "EPS - design considerations", Publication No. 61, Norwegian Road Research Laboratory, Oslo, Norway, pp. 17-20.

Refsdal, G., "Future trends for EPS use", Publication No. 61, Norwegian Road Research Laboratory, Oslo, Norway, pp. 29-32.

Rutz, L., "Expanded polystyrene as an embankment alternative for highway slope failures", report prepared for project No. MP20-0160-30, State of Colorado Department of Transportation, U.S.A.

1988

"Transports/un tramway nomme silence", Le Moniteur, 5 February.

"Wegen op PS-hardschuim", Stichting bouw research, Rotterdam, The Netherlands.

1989

"Plastics replace subsoil", ENR, 27 April, p. 17.

"Polystyrene-stabilized", *Contractors Market Center*.

"Polystyrol roads introduced in Japan", *International Roads Federation*, May.

Upright, W., "Colorado fights frost heave with insulation", *Public Works*, Vol. 120, No. 8, pp. 81-82.

van de Woerdt, D. and de Wijs, W., "Wegen met PS-hardschuim op zetting onderzocht", *Wegen*, October.

Wawrzkow, M., "The use of plastic foam as a lightweight embankment fill", senior report, University of New Brunswick, Canada.

1990

Clowater, D., "Testing of expanded polystyrene for its use as a lightweight fill", senior report, University of New Brunswick, Canada.

"Composite modules make golf green float", *ENR*, 3 December, p. 20.

Frydenlund, T. E., "Expanded polystyrene - a lighter way across soft ground", paper presented at a seminar on EPS, Osaka, Japan.

Oikawa, H., Yanagisawa, E., Inada, T. and Hirnao, I., "Behavior of expanded polystyrene blocks as backfill material on extra soft ground", Proceedings of the 10th Southeast Asian Geotechnical Conference, Taipei, Taiwan, R.O.C., April.

Polen, B., "PS-hardfoam as a low price levelling-up material", TRRL Translation T 3640, Transport and Road Research Laboratory, Crowthorne, Berkshire, U.K.

"Potential of EPS blocks in construction", Road Engineering Intelligence & Research, July-August, p. 8.

"Remblais ultralégers sur sols compressibles", SETRA.

"Utilisation de polystyrene expanse en remblai routier: guide technique", Laboratoire Central Ponts et Chaussées/SETRA, France, 18 pp.

Williams, D. and Snowdon, R. A., "A47 Great Yarmouth western bypass: performance during the first three years", Contractor Report 211, Transport and Road Research Laboratory, Crowthorne, Berkshire, U.K.

1991

"EPS foam keeps building foundation from shifting", Modern Plastic International, Lausanne, Switzerland, No. 9, September.

"Expanded polystyrene is economic filler", *Highways*, March.

"Fillmaster used in bridge abutments", *Highways and Transportation*, June, p. 15.

Frydenlund, T. E., "Expanded polystyrene - a lighter way across soft ground", Internal Report No. 1502, Norwegian Road Research Laboratory, Oslo, Norway, May.

Johnson, A. W., "Insulation in the basement can make it cozier upstairs", RSI, June, pp. 46-50.

Koga, Koseki and Shimazu, "Checking EPS embankments concerning earthquake resistance", Material from the Public Works Research Institute No. 2946.

"Polystyrene foam eases the burden at Syracuse mall", Civil Engineering, American Society of Civil Engineers, New York, N.Y., U.S.A., Vol. 61, No. 10, October, p. 84.

Skaggedal, H. and Aabøe, R., "Temporary overpass bridge abutments founded on fills of expanded polystyrene", Nordic Road & Transport Research, No. 2, pp. 20-23.

"Use of expanded polystyrene in road embankments; technical guide", TRRL Translation T 3766, Transport and Road Research Laboratory, Crowthorne, Berkshire, U.K., May.

van Dorp, T., "Expandable polystyrene - process and product", International Conference - Interpec China '91, Beijing, P.R.C., September.

Vaslestad, J., "Load reduction on buried rigid pipes below high embankments", Pipeline Crossing Proceedings; Special Conference/Pipeline Division, American Society of Civil Engineers, New York, N.Y., U.S.A., pp. 47-58.

1992

Bartholomew, C. L., "An investigation of the usage of recycled polystyrene foam (EPS)", research report submitted to ARCO Chemical Company by Widener University, Department of Civil Engineering, West Chester, Pa., U.S.A.

"EPS roofing, wall and foundation design ideas", The Society of the Plastics Industry, Inc., Expanded Polystyrene Division, Washington, D.C., U.S.A.
"Erdberührte bauteile; Styropor als perimeterdämmung", Styropor Polystyrol-Hartschaum; Dämmpraxis 7.410, Industrieverband Hartschaum e.V., Heidelber, Germany.

"Evaluation of the layer consisting of EPS and concrete slab as a subgrade of road; initial data bank of Funaiso section; national highway route no. 9", report prepared for Expanded Polystyrol Construction Method Development Method, Tokyo, Japan by Nippon Hodo Co., Ltd. and Green Consultant Co. Ltd. (in Japanese).

"Expanded polystyrene used in road embankments - design, construction and quality assurance", Form 482E, Norwegian Road Research Laboratory, Oslo, Norway, September.

"Manitoba concept becomes product", *Construction Manitoba*, September, pp. 2-3.

"Material requirements for expanded polystyrene used in road embankments", Form 483E, Norwegian Road Research Laboratory, Oslo, Norway, September.

"Quality control of expanded polystyrene used in road embankments", Form 484E, Norwegian Road Research Laboratory, Oslo, Norway, September.

Yamazaki, F., Ichida, M., Ohbo, N. and Katayama, T., "Earthquake observation and finite element analysis of an RC retaining wall with EPS backfill", *Journal of Institute of Industrial Science*, University of Tokyo, Japan, Vol. 44, No. 8, pp. 28-34.

1993

Aabøe, R., "Deformasjonsegenskaper og spenningsforhold i fyllinger av EPS", Internal report No. 1645, Norwegian Road Research Laboratory, Oslo, Norway, December, 22 pp.

Bull-Wasser, R., "EPS - hartschaum als baustoff für straßen", Berichte der Bundesanstalt für Straßenwesen - Straßenbau Heft S4, Bundesanstalt für Straßenwesen, Bergisch Gladbach, Germany, November.

Duškov, M., "Materials research on expanded polystyrene foam (EPS)" research report, Delft University of Technology, Delft, The Netherlands, September.

Esch, D. C., "20 year performance history on first insulated roadway on permafrost in Alaska", Proceedings; Permafrost - Sixth International Conference, Beijing, P.R.C., pp. 164-174.

Horvath, J. S., discussion of "Weight-credit foundation construction using artificial fills" by E. J. Monahan, Transportation Research Record No. 1422, Transportation Research Board, Washington, D.C., U.S.A., pp. 4-5.

"Manual of design/execution of light embankments using expanded polystyrol", Material from Civil Engineering Research Institute No. 3089, Civil Engineering Research Institute, Ministry of Construction, Japan, March.

McAffee, R. P., "Geofoam as lightweight embankment fill", senior project report submitted to the University of New Brunswick, Fredericton, N.B., Canada, April.

Savoy, T., "Building material, with protection from insects, molds, and fungi". U.S. Patent No. 5,194,323, issued 14 December.

Vaslestad, J., Johansen, T. H. and Holm, W., "Load reduction on rigid culverts beneath high fills: long-term behavior", Transportation Research Record No. 1415, pp. 58-68.

1994

Duškov, M., "EPS as a light weight sub-base material in pavement structures; final report", Report No. 7-94-211-6, Delft University of Technology, Delft, The Netherlands, February.

"Polystyrene blocks support sinking roadway", Civil Engineering, American Society of Civil Engineers, New York, N.Y., U.S.A., Vol. 64, No. 10, October, p. 86.

"Shop aground", *NCE Roads Supplement*, Institution of Civil Engineers, U.K., June, pp. 41-43.

1995

Chang, Y. C., "A case study on EPS construction in abutment backfill", *The Eighth Conference of Road Engineering Association of Asia and Australasia*, Taipei, Taiwan, R.O.C.

Chang, Y. C., "A study on EPS construction method (III)", report prepared for the Korea Highway Corporation Highway Research Lab, South Korea.

"Code of practice; using expanded polystyrene for the construction of road embankments", BASF, Germany, August, 14 pp.

"Grundwerken ophoogmaterialen van kunstof", Standard RAW Bepalingen, Hoofdstuk 22, paragraaf 81 t/m 87, CROW, Eide, The Netherlands.

Krollmann, N., "Langzeitverhalten von extrudierten polystyrol-hartschaum bei konstanter und zyklisch wechselnder druckbeanspruchung", Bauphysik 17, Heft 1, Ernst & Sohn-Verlag, Germany.

1996

Inglis, D., Macleod, G., Naesgaard, E. and Zergoun, M., "Basement wall with seismic earth pressures and novel expanded polystyrene foam buffer layer", preprint paper, 10th Annual Symposium, Vancouver Geotechnical Society, Vancouver, B.C., Canada, June.

Throne, J. L., "Thermoplastic foams", Sherwood Publishers, Hinckley, Ohio, U.S.A.

1997

Horvath, J. S., "Geofoam geosynthetic: past, present, and future", paper distributed to attendees at a presentation to the State of Delaware Department of Transportation on behalf of ACF Environmental and GeoTech Systems Corporation, Dover, Delaware, U.S.A., June.

Horvath, J. S., "Geofoam geosynthetic: past, present, and future", paper prepared for distribution to participants at the Fourth Professor Training Course for Geosynthetics, Auburn University, Auburn, Ala., U.S.A., July.

Horvath, J. S., discussion of "Analyses of active earth pressure against rigid retaining wall subjected to different modes of movement" by H. Matsuzawa and H. Hazarika, Soils and Foundations, Japanese Society of Geotechnical Engineering, Tokyo, Japan, Vol. 37, No. 4, December, p. 133.

"Una espuma resistente y ecológia para suelos blandos o anegadizos", La Nueva Construccion, No. 2, Buenos Aires, Argentina, February, pp. 44-47.

1998

Beinbrech, G. and Hohwiller, F., "Polstergründungen hartschaum aus Styropor als deformations- und polsterschicht", *Tiefbau*, Germany, April.

1999

Horvath, J. S., "Designing with geofoam geosynthetic", notes prepared for participants at an American Society of Civil Engineers continuing education seminar, Atlanta, Ga., U.S.A., January.

Horvath, J. S., "Designing with geofoam geosynthetic", notes prepared for participants at an American Society of Civil Engineers continuing education seminar, South San Francisco, Calif., U.S.A., March.

Horvath, J. S., "Technical issues for designing with and marketing EPS geofoam", notes prepared for distribution to attendees at a confidential presentation to industry, U.S.A., May.

Horvath, J. S., "Designing with geofoam geosynthetic", notes prepared for participants at the Polyfoam Packers Corporation/American Society of Civil Engineers continuing education seminar, Glenview, Ill., U.S.A., May.

Horvath, J. S., "Geofoam geosynthetic: an overview of the past and present, and a view into the future", paper prepared for distribution to participants at the Effective Roadway Design and Maintenance with Geosynthetics short course, University of Wisconsin - Madison, Department of Engineering Professional Development, Madison, Wis., U.S.A., June.

Horvath, J. S., "EPS geofoam in transportation applications", notes distributed to attendees at a presentation at the State of Rhode Island Department of Transportation on behalf of Branch River Foam Plastics, Inc., Providence, Rhode Island, U.S.A., November.

2000

Horvath, J. S., "Introduction to geofoam geosynthetic", notes distributed to participants at a seminar sponsored jointly by Plymouth Foam Incorporated and NOVA Chemicals Inc., Waukesha, Wisconsin, U.S.A., May.

in press

Horvath, J. S., "Lessons learned from failures involving geofoam in roads and embankments".

undated/date unknown

"A survey of Minnesota home exterior foundation wall insulation; moisture content and thermal performance", report, Minnesota Department of Public Service.

Aabøe, R., "Norwegian roads on foam fill", Norwegian Road Research Laboratory, Oslo, Norway.

Bartlett, P. A., "Density and thermal gradients in billets and their effects on physical properties", technical data bulletin published by the ARCO Chemical Company, Newtown Square, Pa., U.S.A.

Kyraku, K., Aoyama, N. and Takeuchi, T., "Behavior of polystyrene foam when subjected to traffic loads", 17th Japan Road Association Conference.

"Moisture content testing of EPS foundation insulation", report, Project No. 4140 94-2190, Huntingdon Engineering and Environmental.

Monahan, E. J., "Weight-credit foundation construction using foam plastic as fill", notes distributed at a lecture sponsored by the American Society of Civil Engineers Metropolitan Section, New York, N.Y., U.S.A.

Geocomb

(no listings prior to 1986)

1986

Blivet, J. C., "Mechanical performance tests in the Nidaplast laboratory", Centre d'Etudes Techniques d l'Equipment Normandie Centre, France (in French).

Perrier, H. and Blivet, J. C., "Drainage and immersion performance of Nidaplast", Centre d'Etudes Techniques d l'Equipment Normandie Centre, France (in French).

1987

1988

1989

Perrier, H., "Light-weight embankments made of cellular material: an approach to the calculation of the ideal dimensions for road structures", Centre d'Etudes Techniques d l'Equipment Normandie Centre, France (in French).

Perrier, Mascre and Vinceslas, "Remblais allégés em matériaux alvéolaires: approché du dimensionnement des structures de chaussée", SETRA.

"1700 m³ of Nidaplast", Chantiers de France, No. 25 (in French).

1990

"Embankments…lightened!", Moniteur, 8 June.

1991

1992

1993

-

1994

-

1995

Perrier, H. and Gourvat, D., "7000 m³ of honey combed structure at foot of the 'Pyramide du Louvre' ", Rencontres, 95.

1996

-

1997

1998

-

1999

-

2000

-
in press

undated/date unknown

"Les structures alvéolaires ultra légères (SAUL) en assainissement pluvial", France.

"Recognition for honeycomb technology", p. 20.